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Abstract: This paper presents a new approach for estimating and improving voltage 
stability margin from phase and magnitude profiles of bus voltages using sensitivity 
analysis of Voltage Stability Assessment Neural Network (VSANN). Bus voltage profile 
contains useful information about system stability margin including the effect of load-
generation pattern, line outage and reactive power compensation, so it is adopted as input 
pattern of VSANN. In fact, VSANN establishes a functionality for VSM with respect to 
voltage profile. Sensitivity analysis of VSM with respect to voltage profile and reactive 
power compensation extracted from information stored in the weighting factor of VSANN 
is the most dominant feature of the proposed approach. Sensitivity of VSM helps one to 
select the most effective buses for reactive power compensation aimed enhancing VSM. 
The proposed approach has been applied to IEEE 39-bus test system which demonstrated 
applicability of the proposed approach. 
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1 Introduction1 
Voltage stability is a fundamental component of 
dynamic security assessment and it has been emerged as 
a major concern for power system security and a main 
limit for loading and power transfer. Voltage stability is 
usually expressed in term of stability margin, which is 
defined as the difference between loadability limit and 
the current operating load level. Traditionally, static 
voltage stability is analyzed based on the power flow 
model [1]. Several major voltage collapse phenomena 
resulted in widespread blackouts [2]. A number of these 
collapse phenomena were reported in France, Belgium, 
Sweden, Germany, Japan, and the United States [3,4]. 
Voltage collapse is basically a dynamic phenomenon 
with rather slow dynamics in time domain from a few 
seconds to some minutes or more [5]. It is characterized 
by a slow variation at system operating point due to the 
load increase and gradual voltage decrease until a sharp 
change occurs. 

In spite of dynamical nature of voltage instability, 
static approaches are used for its analysis based on the 
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fact that the system dynamics influencing voltage 
stability are usually slow [6-8], so, if system models are 
chosen properly, the dynamical behavior of power 
system may be closely approximated by a series of 
snapshots matching the system conditions at various 
time steps along the system trajectory [6, 9]. Numerous 
researches have been devoted to the analysis of both 
static and dynamic aspects of voltage stability [10]. In 
order to preserve voltage stability margin at a desired 
level, online assessment of stability margin is highly 
demanded which is a challenging task requiring more 
sophisticated indices. Voltage security assessment could 
be basically categorized in two types as 1-model based 
approaches and 2- non model based approaches. 

In recent literatures, many voltage stability indices 
have been presented which are mainly model based 
approaches evaluated by the load flow calculation. All 
of the approaches evaluated by sensitivity analysis, 
continuation power flow [9,11,12], singular value of 
Jacobian matrix [13,14] and load flow feasibility [6,7] 
are model based. Some methods utilized system 
Jacobian matrix [9,12,13,15] by exploiting either its 
sensitivity or its eigenvalue to determine system vicinity 
to singularity. All these methods are usually time 
consuming and not suitable for online applications. In 
[15] an enhanced method for estimating look-ahead load 
margin to voltage collapse, due to either saddle-node 
bifurcation or the limit-induced bifurcation, is proposed. 
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In [1], a static approach based on optimal power flow 
(OPF), conventional load flow and singular value 
decomposition of the load flow Jacobian matrix is 
proposed for assessing the steady-state loading margin 
to voltage collapse of the North-West Control Area 
(NWCA) of the Mexican Power System. In [16], 
derivative of apparent power against the admittance of 
load (dS/dY) is proposed for measuring proximity to 
voltage collapse. The techniques proposed in [2] are 
able to evaluate voltage stability status efficiently in 
both pre-contingency and post-contingency states with 
considering the effect of active and reactive power 
limits. In [5], based on the fact that the line losses in the 
vicinity of voltage collapse increase faster than apparent 
power delivery, so, by using local voltage magnitudes 
and angles, the change in apparent power flow of line in 
a time interval is exploited for computation of the 
voltage collapse criterion. In [17] by means of the 
singular value decomposition (SVD) of Jacobian matrix 
the MIMO transfer function of multi-machine power 
system for the analysis of the static voltage stability is 
developed. In [18], operating variable information 
concerning the system base condition as well as the 
contingency, like line flow, voltage magnitude and 
reactive reserve in the critical area are used to provide a 
complex index of the contingency severity. In [8], 
modal analysis and minimum singular value are used to 
analyze voltage stability and estimate the proximity of 
system condition to voltage collapse. 

Artificial intelligence techniques have been used in 
several power system applications. In [15], a feed 
forward neural network is used to evaluate L index for 
all buses. In [19] for online voltage stability assessment 
of each vulnerable load bus an individual feed forward 
type of ANN is trained. In this method, ANN is trained 
for each vulnerable load bus and for a wide range of 
loading patterns. In [20], a neural network-based 
approach for contingency ranking of voltage collapse is 
proposed. For this purpose by using the singular value 
decomposition method, a Radial Basis Function (RBF) 
neural network is trained to map the operating 
conditions of power systems to a voltage stability 
indicator and contingency severity indices 
corresponding to transmission lines. 

In this paper, a novel approach based on neural 
network application is proposed for online assessment 
and  fast improvement of voltage stability margin. In 
this method, a voltage stability assessment neural 
network (VSANN) works as an online voltage stability 
margin (VSM) estimator and is utilized for enhancing 
power system’s VSM. In the proposed approach, 
VSANN is fed by network voltage profile. Network 
voltage profile obtained by synchronous measurement 
of bus voltages by means of PMU’s provides an 
operating feature of power system containing the effects 
of load-generation pattern, network structure (e.g. line 

outage) and reactive power compensation. Therefore, 
the voltage profile is able to reflect the variation effect 
of load-generation pattern and network structure (due to 
line outage) on the voltage stability margin. The 
easiness of accessibility and measuring of bus voltages 
demonstrates this approach very suitable for estimating 
VSM in normal condition and even after being subject 
to a disturbance. 
 
2 Proposed approach 

In this paper, for fast estimating and improving 
voltage stability margin a new approach bade on the 
application of neural network is proposed. Fig. 1 shows 
the conceptual structure of the proposed approach. In 
the proposed approach, at any given operating 
condition, network voltage profile including both phase 
and magnitude of bus voltages is provided by 
synchronous measurement of bus voltages. By feeding 
the network voltage profile to VSANN, the system 
VSM corresponding to the current operating point is 
evaluated. If it is recognized that the system VSM is 
less than a desired value (VSM*), it will be deduced to 
enhance the system voltage security. For this purpose by 
evaluating the sensitivity of VSM with respect to 
reactive power compensation, the most appropriate 
buses are found for reactive power compensation. This 
sensitivity is evaluated by using the information stored 
in the weighting factors of VSANN during training 
process and network voltage profile at the current 
operating condition. 

 
3 Voltage Stability Assessment Neural Network 

In this paper, a multilayer feed forward neural 
network is utilized to map the highly non-linear 
relationship between network voltage profile and the 
corresponding voltage stability margin. Network 
voltage profile provided by synchronous measurement 
of bus voltages constitutes the input pattern of VSANN. 
The number of input neurons of VSANN is determined 
based on the size of the power system to be studied. 
There is only one output neuron which gives the 
estimated VSM. The number of hidden neurons is 
determined based on the trial and error. 

Generally, one of the drawbacks of neural network 
application in power system problems is dependency of 
its training on the network topology. So, this 
dependency necessitates updating the training process in 
the case of any change in network topology  due to line 
outage or line addition. The input pattern of the 
proposed VSANN is selected in such a way to eliminate 
the dependency of its training to network topology 
change which may arise from line or generator outage. 
Therefore, in the case of line outage, network voltage 
profile including the effect of network topology, load-
generation pattern and reactive power compensation 
remains as representative of system voltage security. 
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Fig. 1 Conceptual structure of the proposed approach. 

 
3.1  Training Data 

Each training data set corresponds to an operating point 
of power system and consists of  network voltage 
profile as the input pattern and the associated VSM as 
the output pattern. In order to train VSANN, it is 
necessary to prepare sufficient and suitable training 
data. For this purpose, a wide variety of load-generation 
increase patterns are adopted. For each load increase 
pattern denoted as loading pattern, continuation power 
flow (CPF) calculation is carried out by increasing load 
and generation through specified steps (i.e. %2) until 
the point of voltage collapse and loadability limit. Each 
loading pattern is represented by a vector α with a 
dimension equal to the number of load buses which 
shows the trend of load increase on load buses. The 
element αk, shown by Eq. (1) represents the share of bus 
#k for load pick up with respect to the total system load. 

loadk
k n

loadk
k 1

P

P
α

=

=

∑
 

(1) 

Fig. 2 denoted as P-V curve, typically shows bus 
voltage variation at different operating points toward 
voltage collapse during increase of load-generation 
based on a specific loading pattern α. 

As shown in Fig. 2, each loading pattern α 
corresponds to a specific P-V curve and an associated 
loading limit (Pmax) denoted as loadability limit. 
During load increase based on a specific loading pattern 
toward voltage collapse, at different steps of load 

increment, system takes various operating points with 
different corresponding voltage profiles and VSM. 

Figure 3 illustrates network voltage profiles 
evaluated for IEEE 39-bus test system corresponding to 
different operating points created in the trajectory of a 
specific load increase pattern until the point of voltage 
collapse. A voltage profile consists of bus voltages 
which are arranged according to the bus number. For 
each operating point with load level Po and with a 
specific voltage profile, there is a corresponding VSM 
evaluated by Eq. (2). 

o,i max,i o,iVSM P - P=  (2) 

where, Pmax,i is system loadability limit associated to the 
loading pattern αi and Po,i is system load level at the 
operating point. 

Loading pattern, generation pattern, network 
topology and reactive power compensation are the 
major factors affecting loadability limit and voltage 
stability margin. In order to embed the effect of network 
 

 
Fig. 2 Typical P-V curve showing loadability limit and VSM. 

 

 
Fig. 3 Bus voltage profiles during load increment toward 
voltage collapse. 
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topology and reactive power compensation into the 
voltage profile and training ability of VSANN, for some 
loading patterns, some lines are taken out and reactive 
power resources are changed to produce new operating 
points with associated voltage profiles and VSM for 
adding to training data. Since voltage profiles are 
prepared for a wide variation in both extremes of 
operating conditions including light load and heavy load 
near to voltage collapse so, VSANN will be able to 
cover and interpolate all possible variation which may 
occur in system condition. Therefore, the ability of 
network voltage profiles for containing the effect of 
network topology, loading pattern, generation pattern, 
reactive power compensation and voltage stability 
margin VSM and also its robustness with respect to 
changes in system conditions and network topology, are 
the main motivation for using it as the input pattern for 
training VSANN. In fact, every unexpected change in 
system condition creates a corresponding voltage profile 
which always lays within the extremes voltage profiles 
and its corresponding VSM can be interpolated by 
VSANN without failure. 
 

3.2  Feature Extraction 
Certain preprocessing steps are performed on the 

neural network input data and targets to make the 
training more efficient. The process of eliminating 
inefficient and redundant data and choosing only those 
data containing maximum information with respect to 
the all components of input data is called feature 
reduction. For training VSANN, the dimension of the 
input pattern in general is related to the size of power 
system. The memory requirement and processing time 
can be reduced either by reducing the dimension of the 
input data or by reducing the number of training 
patterns. In this paper, the dimension of input space is 
reduced by extracting its dominant features in a lower 
dimension space by using principle component analysis 
(PCA) [21, 22]. Principle component analysis is one of 
the well-known feature extraction techniques and a 
standard technique commonly used for data reduction in 
statistical pattern recognition and signal processing. 
PCA is useful in situations where the dimension of the 
input vector is large, but the components of the vectors 
are highly correlated. 

For this purpose, first the inputs and target are 
normalized such that they have zero mean and unity 
standard deviation. This also ensures that the inputs and 
target fall within a particular range. During the testing 
phase of VSANN, new inputs are also preprocessed 
with the mean and standard deviations which were 
computed for the training set. Then, by applying 
principal component analysis the normalized input 
training data are preprocessed. This analysis reduces the 
size of input pattern by eliminating correlated data and 
transforms the input data into an uncorrelated space. In 

the reduced space, only principle components with more 
contribution remain. Principal components analysis is 
carried out using singular value decomposition. PCA 
can be represented by Equations (3) and (4). 

*
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*
k t k m m tX T *X× × ×=  (4) 

where X is input data consists of phase and magnitude 
of all bus voltages before feature extraction, T is 
decomposition and transfer matrix with rows consisting 
of the eigenvectors of the input covariance matrix and 
X* is reduced input data including k uncorrelated 
components which are ordered according to the 
magnitude of their variance. 

By this transformation, those components 
contributing by only a small amount to the total 
variance in the data set are eliminated. Fig. 4 shows the 
concept and process of feature reduction technique 
applied to the proposed approach. 
 

3.3  Training VSANN 
The proposed VSANN is trained by the back-

propagation algorithm using Levenberg Marquardt 
optimization. This algorithm is designed to provide fast 
convergence. The number of input variables depends on 
the number of the extracted features of voltage profile. 
There is only one output neuron representing the 
estimated VSM. The number of neurons in hidden layer 
is adopted by trial and error. Early stopping regime is 
also applied to improve ANN generalization by 
preventing the training from over fitting problem [23]. 
In the context of neural network, over fitting is also 
known as overtraining where further training will not 
result in better generalization. In this technique, the 
available data are divided into three subsets. The first 
subset is the training set which is used for computing 
the gradient and updating the weighting factors and 
biases of VSANN. The second subset is the validation 
set. The error of validation set is periodically monitored 
during the training process. The validation error will 
normally decrease during the initial phase of training. 
When the overtraining starts to occur, the validation 
error will typically begin to rise. Therefore, it would be 
useful and time saving to stop the training after the 
validation error has increased for some specified 
numbers of iteration. The process of VSANN training 
consisting of data generation, preprocessing and training 
is depicted in Fig. 4. 
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Fig. 4 Conceptual scheme for process of VSANN training. 
 

4 Sensitivity Analysis of VSANN 
After training VSANN and in the working mode of 

the proposed approach shown in Fig.1, if the estimated 
VSM by VSANN is found out to be less than a desired 
VSM, it will become necessary to enhance the system 
stability margin by reactive power compensation. For 
this purpose, the sensitivity analysis of VSM with 
respect to bus voltages is performed to find the most 
effective buses for compensation. The sensitivity of 
VSM with respect to each bus voltage magnitude can be 
calculated by Eq. (5) [22] using information stored in 
the weighting factors of VSANN and input data. 
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where: 
NH: Number of hidden neurons. 
n:   Number of network buses. 
W1(i,j): Weighting factor connecting the jth input neuron 

to the ith hidden neuron. 
W2(i): Weighting factor connecting output neuron to the 

ith hidden neuron. 
ri, φi: Input and output of the ith hidden neuron, 

respectively. 
E, ψ: Input and output of the output neuron, 

respectively. 
ri

o: Initial output value of the ith hidden neuron. 
Eo: Initial output value of the output neuron. 
u: Number of uncontrolled or PQ bus. 
T(j,u): Element of feature transfer matrix T. 

In order to find the most effective bus for injecting 
capacitive reactive power and consequently increasing 
VSM, it is necessary to evaluate the sensitivity of VSM 
with respect to reactive power compensation. For this 
purpose, the network Jacobain matrix as shown in Eq. 
(6) is used. By eliminating active power change and 
reducing Jacobain matrix, the Eq. (7) is obtained which 
shows the sensitivity of bus voltages to reactive power 
injection.   
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where: 
*
RJ : Reduced Jacobian matrix equals to -1

4 3 1 2(J - J J J )=  
ΔV: Bus voltage variation. 
QInj: Reactive power injection. 

Using the reduced Jacobian matrix, the sensitivity of 
VSM with respect to VAr injection at bus kth can be 
obtained as follows: 
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where: 
Nu: Total number of uncontrolled or PQ buses. 
QInj,k: Injected reactive power at bus kth. 
J*

R(i,k): Element (i,k) of  the reduced Jacobian matrix. 

In order to increase VSM to the desired value 
(VSM*), it is required to inject reactive power Qinj at the 
most effective buses with the highest sensitivity 
obtained by Eq. (10). It should be noted that the process 
of VSM improvement by reactive power injection 
should be carried out sequentially for each bus at one 
step. In other words, Eq. (9) represents the final change 
in VSM which is achieved by summation of step by step 
reactive power injection at different buses. At each 
operating point, the desired VSM is defined as a 
percentage (β) of the current load level as follows: 

0
* P=VSM β  (11) 

where: 
P0: Load level at the current operating point. 
VSM*: Desired VSM at the current operating point. 
β: Margin coefficient within the range [0~1]. 

 
5 VSM Improvement by Reactive Power Control 

In order to improve voltage stability margin, 
network reactive power resources should be effectively 
controlled by recognizing the most effective buses 
based on the sensitivity analysis of VSANN. As it is 
shown in Fig. 1, at each operating point, VSM is 
initially estimated by VSANN using initial voltage 
profile. If the estimated VSM is found out to be greater 
than VSM*, system condition will be recognized secure, 
otherwise the sensitivity analysis of VSANN using Eq. 
(10) will be performed and the most effective buses will 
be recognized for reactive power compensation. The 
process of compensation is carried out step by step and 
at each step the most effective bus with the highest 
sensitivity is selected for compensation with 50 MVAr 
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capacitive reactive power. At each step after applying 
reactive power, voltage profile, VSM and sensitivities 
are updated for the next step. This process will continue 
until VSM reaches the desired value VSM* or the 
sensitivities show that there is no gain for improvement. 
 
6 Simulation Studies 

In order to demonstrate the effectiveness of the 
proposed approach, it has been simulated on the New 
England 39-bus test system as shown in Fig. 5. In order 
to prepare training data, 23 load increase patterns are 
adopted and by means of CPF calculation system load is 
incrementally increased until the point of loadability 
limit. Load increase patterns are chosen in such variety 
that corresponding loadability limits lie in the range of 
7000 to 12800 MW. With respect to each loading 
pattern, during load increment toward voltage collapse 
various operating points with associated load level, 
voltage profile and VSM are created. In order to embed 
the effect of network topology and reactive power 
compensation into voltage profiles and corresponding 
VSM, for some loading patterns network topology is 
changed by line outages or reactive power are injected 
at some buses. By this way 10269 operating points with 
a wide variety in voltage profile and VSM are generated 
and used for training VSANN. 

After data preparation, 30% , 10% and 60% of total 
10269 patterns are used for training, validating and 
testing VSANN respectively. The training patterns are 
selected from those operating points whose VSM cover 
the whole range of feasible variation of system 
conditions including the effect of line outage and 
reactive power compensation. For each training pattern, 
the original input variables are 78 variables consisting 
of voltage magnitudes and phase angles of 39 buses. By 
applying the PCA transformation on original 78 
operating variables through 3081 training patterns, they 
are reduced to 8 main components. Table 1 shows the 
number of training, validating and test patterns and 
number of hidden neurons of the trained VSANN. Fig. 6 
shows the trend of errors corresponding to training, 
validating and testing VSANN. At the end of training 
process of VSANN, Mean Square Error (MSE) and 
epoch reached 0.0113 and 34 respectively. 

In addition to training, validating and testing errors, 
another post-training analysis denoted as regression 
analysis has been performed relating VSANN response 
to the actual values to investigate the performance of the 
trained VSANN. For this purpose, linear regression 
between VSANN outputs and exact values is used to 
determine the accuracy of VSANN. In Fig. 7, the 
outputs of VSANN are plotted versus the exact values, 
while its slope and correlation coefficient are about 
0.987 and 0.994 respectively which are very close to 1 
indicating good performance of VSANN. Fig. 8 shows 
the estimated VSM by VSANN compared to the exact 

values for 100 samples randomly selected for testing 
VSANN. The normalized error between exact and 
estimated values of VSM lies in the range of -0.17 to 
0.14. 

 

 
Fig. 5 New England 39-bus test power system. 

 

 
Fig. 6 Trend of errors corresponding to training, validation 
and testing in 34 epochs of training. 
 

 
Fig. 7 Post regression analysis on TRAINLM. 
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Fig. 8 Comparison between exact VSM and ANN output. 
 
Table 1 Characteristics of the trained VSANN. 

Training 
patterns 

Validation 
patterns 

Test 
patterns 

Hidden 
neurons 

Training 
time 
(sec.) 

3081 1026 6162 30 64.35 
 

After training and testing VSANN, it is used in the 
working mode of the proposed algorithm shown in Fig. 
1. In this mode, for any given operating point of power 
system by synchronous measurement of bus voltages, 
voltage magnitudes and phase angles are extracted as 
input data for estimating VSM by VSANN. If the 
estimated VSM is less than the desired voltage stability 
margin VSM*, then by means of sensitivity analysis the 
most effective bus will be selected for reactive power 
compensation. At each step of compensation, new 
voltage profile and VSM are evaluated. This process is 
carried out until VSM reaches VSM*. 

As a case study, for an operating point with load 
level 7559.8 MW, the value of β in Eq. (13) is taken as 
0.20 and two scenarios are studied in which all network 
buses are supposed to be equipped with 200 and 100 
MVAr reactive power resources respectively. Tables 2 
shows the result of compensation for the first scenario 
in which VSM has increased from 905.8 MW to 1463.2 
MW through 28 steps of compensation with total 1400 
MVAr compensation. Tables 3 shows the result of 
compensation for the second scenario. Figs. 9 and 10 
 

Table 2 Results of reactive power compensation for scenario 1. 

Sc. 
No. 

PL0 
(MW) 

Before 
Compensation After Compensation 

Most 
Effective 

Buses 

Injected 
Reactive 
Power 

(MVAr) 

VSM 
By 

VSANN 
(MW) 

VSM 
by 

C.P.F. 
(MW) 

VSM 
By 

VSANN 
(MW) 

VSM 
By 

C.P.F. 
(MW) 

1 7559.8 905.8 853.52 1525.3 1463.2 

3 150 
4 100 
8 50 
12 50 
15 150 
16 200 
18 200 
21 200 
24 200 
27 100 
Σ 1400 

 
Table 3 Results of reactive power compensation for scenario 2. 
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(MW) 

VSM 
by 
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(MW) 
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By 

VSANN 
(MW) 

VSM 
By 

C.P.F. 
(MW) 

2 7559.8 905.8 853.52 1160.9 1219.3 

3 100 
4 100 
8 50 
12 50 
18 100 
21 100 
24 100 
26 100 
27 100 
Σ 800 
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Fig. 9 Voltage profiles before and after compensation-scenario 1. 
 

 
Fig. 10 Voltage profiles before and after compensation-
scenario 2. 
 
show voltage profiles before and after compensation 
through several steps of improvement for scenarios 1 
and 2 respectively. 

By comparing scenario 1 with 2, it can be deduced 
that smaller size of compensation leading to the choice 
of less efficient place for reactive power injection has 
resulted in less improvement for VSM. As it can be 
seen, after compensation at the most effective buses, 
voltage profile is moved upwards and corresponding 
VSM is improved. It is worth noting that the proposed 
approach is aimed to be a simple and fast algorithm for 
improving VSM by reactive power compensation rather 
than optimization. 
 
7 Conclusion 

In this paper, a new algorithm based on voltage 
profile and neural network application is proposed for 
fast estimating and enhancing voltage stability margin. 
In this approach, network voltage profile consisting of 
both phase and magnitude of bus voltages which are 

measured synchronously by PMU constitutes the input 
pattern for VSANN. The most interesting feature of  the 
neural network application used in this paper is its 
ability for sensitivity analysis of VSM with respect to 
bus voltages and reactive power compensation. Network 
voltage profile is a robust operating variable which 
contains the effect of load-generation pattern, network 
topology and reactive power compensation with no 
dependency on a specific topology of the network. In 
order to increase the efficiency of training process of 
VSANN, principle component analysis has been used as 
feature reduction for extracting more dominant feature 
of voltage profile. The main advantage of the proposed 
approach is its ability for direct estimation of VSM from 
bus voltages at any moment so that any change in 
network topology due to line outage has no effect on 
VSANN performance. The simulation results 
demonstrate the effectiveness and suitability of the 
proposed approach for fast evaluating and enhancing 
voltage stability in an online environment. 
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