Improving Voltage Stability Margin Using Voltage Profile and
Sensitivity Analysis by Neural Network
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Abstract: This paper presents a new approach for estimating and improving voltage
stability margin from phase and magnitude profiles of bus voltages using sensitivity
analysis of Voltage Stability Assessment Neural Network (VSANN). Bus voltage profile
contains useful information about system stability margin including the effect of load-
generation pattern, line outage and reactive power compensation, so it is adopted as input
pattern of VSANN. In fact, VSANN establishes a functionality for VSM with respect to
voltage profile. Sensitivity analysis of VSM with respect to voltage profile and reactive
power compensation extracted from information stored in the weighting factor of VSANN
is the most dominant feature of the proposed approach. Sensitivity of VSM helps one to
select the most effective buses for reactive power compensation aimed enhancing VSM.
The proposed approach has been applied to IEEE 39-bus test system which demonstrated
applicability of the proposed approach.
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1 Introduction
Voltage stability is a fundamental component of
dynamic security assessment and it has been emerged as
a major concern for power system security and a main
limit for loading and power transfer. Voltage stability is
usually expressed in term of stability margin, which is
defined as the difference between loadability limit and
the current operating load level. Traditionally, static
voltage stability is analyzed based on the power flow
model [1]. Several major voltage collapse phenomena
resulted in widespread blackouts [2]. A number of these
collapse phenomena were reported in France, Belgium,
Sweden, Germany, Japan, and the United States [3,4].
Voltage collapse is basically a dynamic phenomenon
with rather slow dynamics in time domain from a few
seconds to some minutes or more [5]. It is characterized
by a slow variation at system operating point due to the
load increase and gradual voltage decrease until a sharp
change occurs.

In spite of dynamical nature of voltage instability,
static approaches are used for its analysis based on the
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fact that the system dynamics influencing voltage
stability are usually slow [6-8], so, if system models are
chosen properly, the dynamical behavior of power
system may be closely approximated by a series of
snapshots matching the system conditions at various
time steps along the system trajectory [6, 9]. Numerous
researches have been devoted to the analysis of both
static and dynamic aspects of voltage stability [10]. In
order to preserve voltage stability margin at a desired
level, online assessment of stability margin is highly
demanded which is a challenging task requiring more
sophisticated indices. Voltage security assessment could
be basically categorized in two types as 1-model based
approaches and 2- non model based approaches.

In recent literatures, many voltage stability indices
have been presented which are mainly model based
approaches evaluated by the load flow calculation. All
of the approaches evaluated by sensitivity analysis,
continuation power flow [9,11,12], singular value of
Jacobian matrix [13,14] and load flow feasibility [6,7]
are model based. Some methods utilized system
Jacobian matrix [9,12,13,15] by exploiting either its
sensitivity or its eigenvalue to determine system vicinity
to singularity. All these methods are usually time
consuming and not suitable for online applications. In
[15] an enhanced method for estimating look-ahead load
margin to voltage collapse, due to either saddle-node
bifurcation or the limit-induced bifurcation, is proposed.
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In [1], a static approach based on optimal power flow
(OPF), conventional load flow and singular value
decomposition of the load flow Jacobian matrix is
proposed for assessing the steady-state loading margin
to voltage collapse of the North-West Control Area
(NWCA) of the Mexican Power System. In [16],
derivative of apparent power against the admittance of
load (dS/dY) is proposed for measuring proximity to
voltage collapse. The techniques proposed in [2] are
able to evaluate voltage stability status efficiently in
both pre-contingency and post-contingency states with
considering the effect of active and reactive power
limits. In [5], based on the fact that the line losses in the
vicinity of voltage collapse increase faster than apparent
power delivery, so, by using local voltage magnitudes
and angles, the change in apparent power flow of line in
a time interval is exploited for computation of the
voltage collapse criterion. In [17] by means of the
singular value decomposition (SVD) of Jacobian matrix
the MIMO transfer function of multi-machine power
system for the analysis of the static voltage stability is
developed. In [18], operating variable information
concerning the system base condition as well as the
contingency, like line flow, voltage magnitude and
reactive reserve in the critical area are used to provide a
complex index of the contingency severity. In [8],
modal analysis and minimum singular value are used to
analyze voltage stability and estimate the proximity of
system condition to voltage collapse.

Artificial intelligence techniques have been used in
several power system applications. In [15], a feed
forward neural network is used to evaluate L index for
all buses. In [19] for online voltage stability assessment
of each vulnerable load bus an individual feed forward
type of ANN is trained. In this method, ANN is trained
for each vulnerable load bus and for a wide range of
loading patterns. In [20], a neural network-based
approach for contingency ranking of voltage collapse is
proposed. For this purpose by using the singular value
decomposition method, a Radial Basis Function (RBF)
neural network is trained to map the operating
conditions of power systems to a voltage stability
indicator ~and  contingency  severity  indices
corresponding to transmission lines.

In this paper, a novel approach based on neural
network application is proposed for online assessment
and fast improvement of voltage stability margin. In
this method, a voltage stability assessment neural
network (VSANN) works as an online voltage stability
margin (VSM) estimator and is utilized for enhancing
power system’s VSM. In the proposed approach,
VSANN is fed by network voltage profile. Network
voltage profile obtained by synchronous measurement
of bus voltages by means of PMU’s provides an
operating feature of power system containing the effects
of load-generation pattern, network structure (e.g. line

outage) and reactive power compensation. Therefore,
the voltage profile is able to reflect the variation effect
of load-generation pattern and network structure (due to
line outage) on the voltage stability margin. The
easiness of accessibility and measuring of bus voltages
demonstrates this approach very suitable for estimating
VSM in normal condition and even after being subject
to a disturbance.

2 Proposed approach

In this paper, for fast estimating and improving
voltage stability margin a new approach bade on the
application of neural network is proposed. Fig. 1 shows
the conceptual structure of the proposed approach. In
the proposed approach, at any given operating
condition, network voltage profile including both phase
and magnitude of bus voltages is provided by
synchronous measurement of bus voltages. By feeding
the network voltage profile to VSANN, the system
VSM corresponding to the current operating point is
evaluated. If it is recognized that the system VSM is
less than a desired value (VSM*), it will be deduced to
enhance the system voltage security. For this purpose by
evaluating the sensitivity of VSM with respect to
reactive power compensation, the most appropriate
buses are found for reactive power compensation. This
sensitivity is evaluated by using the information stored
in the weighting factors of VSANN during training
process and network voltage profile at the current
operating condition.

3 Voltage Stability Assessment Neural Network

In this paper, a multilayer feed forward neural
network is utilized to map the highly non-linear
relationship between network voltage profile and the
corresponding voltage stability margin. Network
voltage profile provided by synchronous measurement
of bus voltages constitutes the input pattern of VSANN.
The number of input neurons of VSANN is determined
based on the size of the power system to be studied.
There is only one output neuron which gives the
estimated VSM. The number of hidden neurons is
determined based on the trial and error.

Generally, one of the drawbacks of neural network
application in power system problems is dependency of
its training on the network topology. So, this
dependency necessitates updating the training process in
the case of any change in network topology due to line
outage or line addition. The input pattern of the
proposed VSANN is selected in such a way to eliminate
the dependency of its training to network topology
change which may arise from line or generator outage.
Therefore, in the case of line outage, network voltage
profile including the effect of network topology, load-
generation pattern and reactive power compensation
remains as representative of system voltage security.
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Fig. 1 Conceptual structure of the proposed approach.

3.1 Training Data
Each training data set corresponds to an operating point
of power system and consists of network voltage
profile as the input pattern and the associated VSM as
the output pattern. In order to train VSANN, it is
necessary to prepare sufficient and suitable training
data. For this purpose, a wide variety of load-generation
increase patterns are adopted. For each load increase
pattern denoted as loading pattern, continuation power
flow (CPF) calculation is carried out by increasing load
and generation through specified steps (i.e. %2) until
the point of voltage collapse and loadability limit. Each
loading pattern is represented by a vector o with a
dimension equal to the number of load buses which
shows the trend of load increase on load buses. The
element oy, shown by Eq. (1) represents the share of bus
#k for load pick up with respect to the total system load.
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Fig. 2 denoted as P-V curve, typically shows bus
voltage variation at different operating points toward
voltage collapse during increase of load-generation
based on a specific loading pattern a.

As shown in Fig. 2, each loading pattern o
corresponds to a specific P-V curve and an associated
loading limit (Pmax) denoted as loadability limit.
During load increase based on a specific loading pattern
toward voltage collapse, at different steps of load

increment, system takes various operating points with
different corresponding voltage profiles and VSM.

Figure 3 illustrates network voltage profiles
evaluated for IEEE 39-bus test system corresponding to
different operating points created in the trajectory of a
specific load increase pattern until the point of voltage
collapse. A voltage profile consists of bus voltages
which are arranged according to the bus number. For
each operating point with load level Po and with a
specific voltage profile, there is a corresponding VSM
evaluated by Eq. (2).

VSM,; =P -P,; 2)
where, P 1s system loadability limit associated to the
loading pattern oi and P,; is system load level at the
operating point.

Loading pattern, generation pattern, network
topology and reactive power compensation are the
major factors affecting loadability limit and voltage
stability margin. In order to embed the effect of network
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Fig. 2 Typical P-V curve showing loadability limit and VSM.
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Fig. 3 Bus voltage profiles during load increment toward
voltage collapse.
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topology and reactive power compensation into the
voltage profile and training ability of VSANN, for some
loading patterns, some lines are taken out and reactive
power resources are changed to produce new operating
points with associated voltage profiles and VSM for
adding to training data. Since voltage profiles are
prepared for a wide variation in both extremes of
operating conditions including light load and heavy load
near to voltage collapse so, VSANN will be able to
cover and interpolate all possible variation which may
occur in system condition. Therefore, the ability of
network voltage profiles for containing the effect of
network topology, loading pattern, generation pattern,
reactive power compensation and voltage stability
margin VSM and also its robustness with respect to
changes in system conditions and network topology, are
the main motivation for using it as the input pattern for
training VSANN. In fact, every unexpected change in
system condition creates a corresponding voltage profile
which always lays within the extremes voltage profiles
and its corresponding VSM can be interpolated by
VSANN without failure.

3.2 Feature Extraction

Certain preprocessing steps are performed on the
neural network input data and targets to make the
training more efficient. The process of eliminating
inefficient and redundant data and choosing only those
data containing maximum information with respect to
the all components of input data is called feature
reduction. For training VSANN, the dimension of the
input pattern in general is related to the size of power
system. The memory requirement and processing time
can be reduced either by reducing the dimension of the
input data or by reducing the number of training
patterns. In this paper, the dimension of input space is
reduced by extracting its dominant features in a lower
dimension space by using principle component analysis
(PCA) [21, 22]. Principle component analysis is one of
the well-known feature extraction techniques and a
standard technique commonly used for data reduction in
statistical pattern recognition and signal processing.
PCA is useful in situations where the dimension of the
input vector is large, but the components of the vectors
are highly correlated.

For this purpose, first the inputs and target are
normalized such that they have zero mean and unity
standard deviation. This also ensures that the inputs and
target fall within a particular range. During the testing
phase of VSANN, new inputs are also preprocessed
with the mean and standard deviations which were
computed for the training set. Then, by applying
principal component analysis the normalized input
training data are preprocessed. This analysis reduces the
size of input pattern by eliminating correlated data and
transforms the input data into an uncorrelated space. In

the reduced space, only principle components with more
contribution remain. Principal components analysis is
carried out using singular value decomposition. PCA
can be represented by Equations (3) and (4).

X1 T.ll 1?“ - T, |x
1= T Tl 3
X, T.kl T, Tl X
Xioxt = T * X “)

where X is input data consists of phase and magnitude
of all bus voltages before feature extraction, T is
decomposition and transfer matrix with rows consisting
of the eigenvectors of the input covariance matrix and
X" is reduced input data including k uncorrelated
components which are ordered according to the
magnitude of their variance.

By this transformation, those components
contributing by only a small amount to the total
variance in the data set are eliminated. Fig. 4 shows the
concept and process of feature reduction technique
applied to the proposed approach.

3.3 Training VSANN

The proposed VSANN is trained by the back-
propagation algorithm using Levenberg Marquardt
optimization. This algorithm is designed to provide fast
convergence. The number of input variables depends on
the number of the extracted features of voltage profile.
There is only one output neuron representing the
estimated VSM. The number of neurons in hidden layer
is adopted by trial and error. Early stopping regime is
also applied to improve ANN generalization by
preventing the training from over fitting problem [23].
In the context of neural network, over fitting is also
known as overtraining where further training will not
result in better generalization. In this technique, the
available data are divided into three subsets. The first
subset is the training set which is used for computing
the gradient and updating the weighting factors and
biases of VSANN. The second subset is the validation
set. The error of validation set is periodically monitored
during the training process. The validation error will
normally decrease during the initial phase of training.
When the overtraining starts to occur, the validation
error will typically begin to rise. Therefore, it would be
useful and time saving to stop the training after the
validation error has increased for some specified
numbers of iteration. The process of VSANN training
consisting of data generation, preprocessing and training
is depicted in Fig. 4.
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Fig. 4 Conceptual scheme for process of VSANN training.

4 Sensitivity Analysis of VSANN

After training VSANN and in the working mode of
the proposed approach shown in Fig.1, if the estimated
VSM by VSANN is found out to be less than a desired
VSM, it will become necessary to enhance the system
stability margin by reactive power compensation. For
this purpose, the sensitivity analysis of VSM with
respect to bus voltages is performed to find the most
effective buses for compensation. The sensitivity of
VSM with respect to each bus voltage magnitude can be
calculated by Eq. (5) [22] using information stored in
the weighting factors of VSANN and input data.

OVSM 0y o N 00 N
ov, " op BT WO T D WA TG (5)
where:

NH: Number of hidden neurons.

n: Number of network buses.

W, (i,j): Weighting factor connecting the j™ input neuron
to the i™ hidden neuron.

W,(i): Weighting factor connecting output neuron to the
i™ hidden neuron.

1, ¢p Input and output of the i™ hidden neuron,
respectively.

E, y: Input and output of the output neuron,
respectively.

r°: Initial output value of the i™ hidden neuron.

E°: Initial output value of the output neuron.

u: Number of uncontrolled or PQ bus.

T(,u): Element of feature transfer matrix T.

In order to find the most effective bus for injecting
capacitive reactive power and consequently increasing
VSM, it is necessary to evaluate the sensitivity of VSM
with respect to reactive power compensation. For this
purpose, the network Jacobain matrix as shown in Eq.
(6) is used. By eliminating active power change and
reducing Jacobain matrix, the Eq. (7) is obtained which
shows the sensitivity of bus voltages to reactive power
injection.

AP| |1, 1,||a0
= (6)

AQ| |1, 1,ljaV

TLAV = AQ 7

AV =1,Q,,=T,.Q, ®)

where:

J; : Reduced Jacobian matrix equals to = (J, -J,J;'J,)
AV: Bus voltage variation.

Qu: Reactive power injection.

Using the reduced Jacobian matrix, the sensitivity of
VSM with respect to VAr injection at bus k™ can be
obtained as follows:

AVSM :i 6VSMAV :i aVSMJ* (1,k)Q 9
K <oV i <oV, r Injk ©)]
AVSM & OVSM |, .
Sy = L= TGk (10)

anj,k i=1 a \/1

where:

Nu: Total number of uncontrolled or PQ buses.

Qu;x: Injected reactive power at bus k™.

J'r(i,k): Element (i,k) of the reduced Jacobian matrix.

In order to increase VSM to the desired value
(VSM*), it is required to inject reactive power Qjy; at the
most effective buses with the highest sensitivity
obtained by Eq. (10). It should be noted that the process
of VSM improvement by reactive power injection
should be carried out sequentially for each bus at one
step. In other words, Eq. (9) represents the final change
in VSM which is achieved by summation of step by step
reactive power injection at different buses. At each
operating point, the desired VSM is defined as a
percentage (B) of the current load level as follows:

VSM' =B P, (11)

where:

Py: Load level at the current operating point.
VSM*: Desired VSM at the current operating point.
: Margin coefficient within the range [0~1].

5 VSM Improvement by Reactive Power Control

In order to improve voltage stability margin,
network reactive power resources should be effectively
controlled by recognizing the most effective buses
based on the sensitivity analysis of VSANN. As it is
shown in Fig. 1, at each operating point, VSM is
initially estimated by VSANN using initial voltage
profile. If the estimated VSM is found out to be greater
than VSM’, system condition will be recognized secure,
otherwise the sensitivity analysis of VSANN using Eq.
(10) will be performed and the most effective buses will
be recognized for reactive power compensation. The
process of compensation is carried out step by step and
at each step the most effective bus with the highest
sensitivity is selected for compensation with 50 MVAr
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capacitive reactive power. At each step after applying
reactive power, voltage profile, VSM and sensitivities
are updated for the next step. This process will continue
until VSM reaches the desired value VSM™ or the
sensitivities show that there is no gain for improvement.

6 Simulation Studies

In order to demonstrate the effectiveness of the
proposed approach, it has been simulated on the New
England 39-bus test system as shown in Fig. 5. In order
to prepare training data, 23 load increase patterns are
adopted and by means of CPF calculation system load is
incrementally increased until the point of loadability
limit. Load increase patterns are chosen in such variety
that corresponding loadability limits lie in the range of
7000 to 12800 MW. With respect to each loading
pattern, during load increment toward voltage collapse
various operating points with associated load level,
voltage profile and VSM are created. In order to embed
the effect of network topology and reactive power
compensation into voltage profiles and corresponding
VSM, for some loading patterns network topology is
changed by line outages or reactive power are injected
at some buses. By this way 10269 operating points with
a wide variety in voltage profile and VSM are generated
and used for training VSANN.

After data preparation, 30% , 10% and 60% of total
10269 patterns are used for training, validating and
testing VSANN respectively. The training patterns are
selected from those operating points whose VSM cover
the whole range of feasible wvariation of system
conditions including the effect of line outage and
reactive power compensation. For each training pattern,
the original input variables are 78 variables consisting
of voltage magnitudes and phase angles of 39 buses. By
applying the PCA transformation on original 78
operating variables through 3081 training patterns, they
are reduced to 8 main components. Table 1 shows the
number of training, validating and test patterns and
number of hidden neurons of the trained VSANN. Fig. 6
shows the trend of errors corresponding to training,
validating and testing VSANN. At the end of training
process of VSANN, Mean Square Error (MSE) and
epoch reached 0.0113 and 34 respectively.

In addition to training, validating and testing errors,
another post-training analysis denoted as regression
analysis has been performed relating VSANN response
to the actual values to investigate the performance of the
trained VSANN. For this purpose, linear regression
between VSANN outputs and exact values is used to
determine the accuracy of VSANN. In Fig. 7, the
outputs of VSANN are plotted versus the exact values,
while its slope and correlation coefficient are about
0.987 and 0.994 respectively which are very close to 1
indicating good performance of VSANN. Fig. 8 shows
the estimated VSM by VSANN compared to the exact

values for 100 samples randomly selected for testing
VSANN. The normalized error between exact and
estimated values of VSM lies in the range of -0.17 to
0.14.
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Fig. 5 New England 39-bus test power system.
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Fig. 6 Trend of errors corresponding to training, validation
and testing in 34 epochs of training.
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Table 1 Characteristics of the trained VSANN.

Training | Validation Test Hidden Trgﬁ;ng
patterns patterns patterns | neurons (sec.)
3081 1026 6162 30 64.35

Table 2 Results of reactive power compensation for scenario 1.

After training and testing VSANN, it is used in the
working mode of the proposed algorithm shown in Fig.
1. In this mode, for any given operating point of power
system by synchronous measurement of bus voltages,
voltage magnitudes and phase angles are extracted as
input data for estimating VSM by VSANN. If the
estimated VSM is less than the desired voltage stability
margin VSM*, then by means of sensitivity analysis the
most effective bus will be selected for reactive power
compensation. At each step of compensation, new
voltage profile and VSM are evaluated. This process is
carried out until VSM reaches VSM .

As a case study, for an operating point with load
level 7559.8 MW, the value of B in Eq. (13) is taken as
0.20 and two scenarios are studied in which all network
buses are supposed to be equipped with 200 and 100
MVAr reactive power resources respectively. Tables 2
shows the result of compensation for the first scenario
in which VSM has increased from 905.8 MW to 1463.2
MW through 28 steps of compensation with total 1400
MVAr compensation. Tables 3 shows the result of
compensation for the second scenario. Figs. 9 and 10

Before . After Compensation .
Compensation Most InJect.ed
Sc. PLO VSM VSM VSM VSM Effective Reactive
No. | (MW) By by By By Buses Power
VSANN | C.P.F. | VSANN | C.PF. (MVAT)
MW) | MW) | (MW) (MW)

3 150

4 100

8 50

12 50

15 150

1 7559.8 905.8 853.52 1525.3 1463.2 16 200
18 200

21 200

24 200

27 100

z 1400

Table 3 Results of reactive power compensation for scenario 2.
Before After
Compensation Compensation Most Injected
Sc. PLO VSM VSM VSM VSM Effective Reactive
No. | (MW) By by By By Buses Power
VSANN | C.P.F. | VSANN | C.PF. (MVAT)
MW) | MW) | (MW) | (MW)

3 100

4 100

8 50

12 50

18 100

2 | 7559.8 905.8 853.52 | 1160.9 | 12193 X 100
24 100

26 100

27 100

z 800
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Fig. 9 Voltage profiles before and after compensation-scenario 1.

11

Voltage (p.u.)

0.851

Before compensation - VSM = 905.8103 MW
—— — After compensation - VSM = 1160.8865 MW

0.8 I I I I I I I
0 5 10 15 20 25 30 35 40

Bus number

Fig. 10 Voltage profiles before and after compensation-
scenario 2.

show voltage profiles before and after compensation
through several steps of improvement for scenarios 1
and 2 respectively.

By comparing scenario 1 with 2, it can be deduced
that smaller size of compensation leading to the choice
of less efficient place for reactive power injection has
resulted in less improvement for VSM. As it can be
seen, after compensation at the most effective buses,
voltage profile is moved upwards and corresponding
VSM is improved. It is worth noting that the proposed
approach is aimed to be a simple and fast algorithm for
improving VSM by reactive power compensation rather
than optimization.

7 Conclusion

In this paper, a new algorithm based on voltage
profile and neural network application is proposed for
fast estimating and enhancing voltage stability margin.
In this approach, network voltage profile consisting of
both phase and magnitude of bus voltages which are

measured synchronously by PMU constitutes the input
pattern for VSANN. The most interesting feature of the
neural network application used in this paper is its
ability for sensitivity analysis of VSM with respect to
bus voltages and reactive power compensation. Network
voltage profile is a robust operating variable which
contains the effect of load-generation pattern, network
topology and reactive power compensation with no
dependency on a specific topology of the network. In
order to increase the efficiency of training process of
VSANN, principle component analysis has been used as
feature reduction for extracting more dominant feature
of voltage profile. The main advantage of the proposed
approach is its ability for direct estimation of VSM from
bus voltages at any moment so that any change in
network topology due to line outage has no effect on
VSANN performance. The simulation results
demonstrate the effectiveness and suitability of the
proposed approach for fast evaluating and enhancing
voltage stability in an online environment.
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